Loss of penicillin tolerance by inactivating the carbon catabolite repression determinant CcpA in Streptococcus gordonii.

نویسندگان

  • A Bizzini
  • J M Entenza
  • P Moreillon
چکیده

OBJECTIVES Antibiotic tolerance is a phenomenon allowing bacteria to withstand drug-induced killing. Here, we studied a penicillin-tolerant mutant of Streptococcus gordonii (Tol1), which was shown to be deregulated in the expression of the arginine deiminase operon (arc). arc was not directly responsible for tolerance, but is controlled by the global regulator CcpA. Therefore, we sought whether CcpA might be implicated in tolerance. METHODS The ccpA gene was characterized and subsequently inactivated by PCR ligation mutagenesis in both the susceptible wild-type (WT) and Tol1. The minimal inhibitory concentration and time-kill curves for the strains were determined and the outcome of penicillin treatment in experimental endocarditis assessed. RESULTS ccpA sequence and expression were similar between the WT and Tol1 strains. In killing assays, the WT lost 3.5 +/- 0.6 and 5.3 +/- 0.6 log(10) cfu/mL and Tol1 lost 0.4 +/- 0.2 and 1.4 +/- 0.9 log(10) cfu/mL after 24 and 48 h of penicillin exposure, respectively. Deletion of ccpA almost totally restored Tol1 kill susceptibility (loss of 2.5 +/- 0.7 and 4.9 +/- 0.7 log(10) cfu/mL at the same endpoints). In experimental endocarditis, penicillin treatment induced a significant reduction in vegetation bacterial densities between Tol1 (4.1 log(10) cfu/g) and Tol1DeltaccpA (2.4 log(10) cfu/g). Restitution of ccpA re-established the tolerant phenotype both in vitro and in vivo. CONCLUSIONS CcpA, a global regulator of the carbon catabolite repression system, is implicated in penicillin tolerance both in vitro and in vivo. This links antibiotic survival to bacterial sugar metabolism. However, since ccpA sequence and expression were similar between the WT and Tol1 strains, other factors are probably involved in tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp.

In Streptococcus gordonii DL1, inactivation of the ccpA gene and a gene encoding an Fnr-like protein (Flp) demonstrated that CcpA was essential for carbohydrate catabolite repression and that Flp was required for optimal expression and anaerobic induction of the arginine deiminase system.

متن کامل

RegG, a CcpA homolog, participates in regulation of amylase-binding protein A gene (abpA) expression in Streptococcus gordonii.

The amylase-binding protein A (AbpA) of Streptococcus gordonii was found to be undetectable in supernatants of mid-log-phase cultures containing >1% glucose but abundant in supernatants of cultures made with brain heart infusion (BHI), which contains 0.2% glucose. A 10-fold decrease in the level of abpA mRNA in S. gordonii cells cultured in BHI was noted after the addition of glucose to 1%. Ana...

متن کامل

The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum.

We report the characterization of the ccpA gene of Lactobacillus plantarum, coding for catabolite control protein A. The gene is linked to the pepQ gene, encoding a proline peptidase, in the order ccpA-pepQ, with the two genes transcribed in tandem from the same strand as distinct transcriptional units. Two ccpA transcription start sites corresponding to two functional promoters were found, exp...

متن کامل

The catabolite control protein CcpA binds to Pmga and influences expression of the virulence regulator Mga in the Group A streptococcus.

Carbon catabolite repression (CCR) allows bacteria to alter metabolism in response to the availability of specific sugar sources, and increasing evidence suggests that CCR is involved in regulating virulence gene expression in many pathogens. A scan of the M1 SF370 group A streptococcus (GAS) genome using a Bacillus subtilis consensus identified a number of potential catabolite-responsive eleme...

متن کامل

Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.

Carbon catabolic repression (CR) by the catabolite control protein CcpA has been analyzed in Staphylococcus xylosus. Genes encoding components needed to utilize lactose, sucrose, and maltose were found to be repressed by CcpA. In addition, the ccpA gene is under negative autogenous control. Among several tested sugars, glucose caused strongest CcpA-dependent repression. Glucose can enter S. xyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2007